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Abstract

Gallstones, typically benign and harmless hardened deposits of digestive fluids, present in
the gallbladder can cause severe painful complications if left untreated and can lead to re-
moval surgery. [1] Quantitative Trait Loci (QTL) analysis can be used to find potential genetic
links through the analysis of logarithm of the odds (LOD) scores which can indicate a possible
connection between those loci on the mouse chromosome and phenotypic presentation of a
trait [2] linked to gallstone susceptibility such as weight, presence, severity and liver weight.
Analyses were performed using the R/QTL package on a cohort of mice, in an intercross breed
and fed a high-fat diet [3]. Analyses were compared between augmented data sets (to pos-
sibly prevent overfitting) and an analysis run on a non-augmented data set.

Keywords QTL Analysis, Gallstone Disease, Genomic Correlation

1. INTRODUCTION

The gallbladder is an organ in the upper right portion of the abdomen, directly below the liver, that
releases bile, a fluid that the liver produces, that digests fats. Bile is a solution of cholesterol, bilirubin,
and bile salts [4]. There are two primary categories of gallstones, cholesterol and pigment stones.
Cholesterol stones form due to a lack of balance of cholesterol, bilirubin, and bile salts in the bile. It can
form due to excess bilirubin or cholesterol or a lack of bile salts. The cause of pigment stones is currently
unknown, but they tend to develop in patients already suffering from cirrhosis, biliary tract infections,
and hereditary blood disorders such as sickle cell anemia [1].

While some traits are very clearly and individually linked to a single particular spot on the genome,
most traits are inherently complex and thus, there are multiple locations on the genome that can
influence the manifestation of that trait. Gallstone disease and susceptibility fall under that umbrella of
traits. Gallstone susceptibility is a multifaceted trait influenced by both genetic and environmental
factors and represents a significant health concern with considerable variability in its occurrence among
individuals. The development of gallstones is associated with a complex interplay of genetic
predisposition and lifestyle factors such as diet and obesity [1].

Quantitative Trait Loci (QTL) analyses can be used to find multiple locations on the genome with high
logarithm of the odds (LOD) scores which can indicate a possible correlation or causation between the
two. QTL analysis uses statistical methods to link quantitative phenotypic traits to genetic markers on
the chromosome to try to genetically explain extremely complex phenotypes [2].

We seek to uncover QTLs that may harbor candidate genes influencing gallstone formation.

The findings from this data-driven approach not only contribute to our understanding of the genetic
determinants of gallstone susceptibility but also pave the way for potential insights into personalized
preventive strategies and therapeutic interventions.
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2. DATA SET(S)

2.1. Setup

In this study, we used the R/qtl package in R [5], developed by
Bromen et. al as well as Ritsert Jansen’s MQM method [6] to
perform our data analysis. R is a programming language and open-
source software environment specifically designed for statistical
computing and data analysis. Widely used by statisticians, data
scientists, and researchers, R provides a comprehensive suite of tools
for data manipulation, statistical modeling, visualization, and the
development of custom analytical workflows. R/qtl is an R package
designed for conducting Quantitative Trait Locus (QTL) analysis, a
statistical method used to identify genetic loci associated with
variations in quantitative traits. Developed for genetic mapping
studies, R/qtl provides a range of tools for analyzing experimental
cross populations, facilitating the detection and characterization of
genomic regions influencing complex traits.

2.2. Data collection

Data for this project was obtained from the Mouse Phenome
Database at the Jackson Laboratory, a grant-funded resource that
provides integrated genomic and phenomic data on behavioral,
morphological, and physiological characteristics in mice [7]. The
Jackson Lab is an independent non-profit biomedical research lab
that primarily conducts genomic research with mice.

shows an in-depth chart, demonstrating visually how the
mice are bred for effective analysis. This specific dataset, the Lyons1
data set, looks at plasma lipids and gallstone susceptibility in the F2
progeny of a DBA/2] x CAST/Ei] intercross. [3] There are two
primary crosses of mice used for QTL analyses, intercross and
backcross. As depicted by , an intercross is characterized by
two homozygous mice in the parental generation bred to produce
heterozygous F1 or first-filial generation children. These F1 mice are
then bred together to produce the F2 generation who are then
utilized in experiments and studies. An interesting side note is that
all of the AA, or homozygous dominant mice in the parental
generation are deeply inbred and thus genetically identical, and so
are all of the BB, or homozygous recessive mice in the parental
generation [8, Chapter 3, Section 2].

Only male mice were utilized in the study. The animals had
unrestricted access to both food and water and were housed in a
temperature-regulated environment (71.6°F - 73.4°F approximately)
which had a 14 hours of light and 10 hours of dark cycle. The
animals were initially fed a low-cholesterol diet until the age of 6-8
weeks when they were switched to a lithogenic, high-cholesterol
diet. This diet was composed of 15 percent butterfat, 1 percent

F2 Inter-cross Breeding Chart
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Figure 1. Breeding Chart for Intercross Strains

Morganton Scientific | Volume 1 | 2023 - 2024

Srinath, 2024

Genetic map

Location (cM)
|
t
,
}
1
t
\
}

60 | - L

80 —

T T T T T T T T T T T T LI L
9 10 11 12 13 14 15 16 17 18 19 X

- o
I
w
IS
3}
o
~
@

Chromosome
Figure 2. Genetic Map for Markers on Mouse Chromosome

cholesterol, 0.5 percent cholic acid, 2 percent corn oil, 50 percent
sucrose, and 20 percent casein. All experimental protocols were
approved by the Institutional Animal Care and Use Committees of
The Jackson Laboratory and Harvard University [9].

2.3. Data structure

The data used was an F2 intercross with 278 individuals. There were
15 phenotypes and all 15 phenotypes had over 96.8 percent of the
individual mice phenotyped. Mice have 20 chromosomes, 19
autosomes, and one sex chromosome, the X chromosome. There are
109 molecular markers in this data and the genetic map is shown
above in

There was a 97.4 percent rate of genotyping, meaning this data is
extremely complete and this is shown in
that there is very little missing data which is 2.6 percent of total data
missing according to the summary function in R/qtl.

below. We can see

Of the 15 phenotypes presented in the dataset, we chose to focus on
four: a score on the severity of the gallstone, the number of
gallstones measured, the weight of the gallstones, and the
aggregates of the severity of cholesterol monohydrate crystals,
which is a key indicator of gallstone development.

3. DATA PREPARATION AND MODELING

3.1. Data Preparation

Prior to running the analyses, we had to prepare the data further.
We first completed a pairwise recombination factor plot to take a
look at the physical distances between markers on the chromosome
and ensure that they are accurate. We first estimate recombination
fractions between markers within a genetic cross with the est.rf
function. Recombination fractions are crucial in genetic mapping as
they indicate the likelihood of genetic crossovers occurring between
markers during the formation of gametes. These fractions are
fundamental for constructing genetic maps, elucidating the
distances between genetic markers, and identifying regions of the
genome associated with specific traits through QTL analyses. We
then generate a visual representation of the estimated
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Figure 3. Missing Data Map

recombination fractions which is essential in understanding the
genetic linkage and physical distances between markers along the
chromosomes, providing researchers with insights into the genetic
architecture of traits and facilitating the identification of potential
genomic regions influencing complex phenotypes. We then plotted

our pairwise recombination scores and LOD scores in

pgm liver wt

gallstone presence gallstone score
Min. :0.0000 Min. :0.9225
Length:278

1st Qu.:0.0000 1st Qu.:1.3244
Class :character Class :character
Median :1.0000 Median :1.5524
Mode :character Mode :character
Mean :0.7266 Mean :1.6115
3rd Qu.:1.0000 3rd Qu.:1.8027
Max. :1.0000 Max. :3.2405

gallstone count
gallstone sandy

As evidenced by the lack of large red spots and a clean line, this data
is clean and alright to use for further analysis.

3.2. Exploratory Data Analysis

After cleaning our data set and ensuring quality control, we then
began exploratory data analysis. The first step was using the R/
ggplot2 library to explore trends within the phenotypic data. We
used a correlation heat map to identify correlations between
phenotypes and the manifestation of gallstones. Correlation heat
maps are a visual representation of the coefficient of determination

between various factors, or the r-squared value in a color-coded
matrix. A value with an absolute value of 1 has a very strong

Pairwise recombination fractions and LOD scores
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Figure 4. Pairwise Recombination

Scores and LOD Scores
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Correlogram of Factors for Gallstone Suscebtibility
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Figure 5. Correlation Heat Map

In this figure, we can see that there is a high positive correlation
between multiple factors, particularly between the binary
classification of the solidity of gallstones and the number of
gallstones, the weight of gallstones and the number of gallstones,
the weight of the gallstones and the binary solidity classification,
and the presence of gallstones and the severity score.

We also ran a dendrogram heat map to analyze correlations as well
as find hierarchical correlations between our phenotypic factors,
shown in Figure 6. This map shows both a heat map to show
correlations between various factors, similar to our previous graph,
but also shows hierarchical relationships between our phenotypic
factors. This helps us understand the degree of the relationship
between the factors.

3.3. QTL Analyses
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Figure 6. Dendrogram Hierarchical Heat Map
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Following this, we can begin the setup for the QTL analysis. We first
calculated the genotypic probabilities for individuals in the genetic
cross by determining the likelihood of different genetic marker
configurations based on specified parameters such as recombination
step size, genotyping error probability, and the Haldane map
function. We then simulated genotypic data for the markers in the
genetic cross, incorporating factors like recombination, genotyping
errors, and mapping functions. This is the primary first step we must
do prior to running any analyses and determining the locus of
interest.

Following this, we completed the same steps for each of our four
factors to generate a main scan analysis as well as effect plots for the
highest probability locus of interest as determined by LOD scores.
We first used the function scanone with a normal model and the
“em” method, which is the Expectation-Maximization method which
estimates missing genotype probabilities in the genetic mapping
analysis. While this is specifically excellent for data sets with
missing phenotypic information, we find that it is still a robust
method of analysis.

For each method, we then completed a permutation on the scan
with 100 permutations to assess the significance of LOD peaks for
each phenotype. We then assigned threshold values based on our
permutation results with confidence intervals of 95 percent, 90
percent, and 63 percent respectively. After this, we plotted the
results onto a main scan plot with colored lines representing our
thresholds. We also ran a summary of the scan per phenotype and
identified the most probable locus of interest per scan. We then used
this location to identify a molecular marker in our data set and run
an effect plot. These plots are particularly useful for understanding
how genetic variation at specific loci influences the phenotypic
variation in a quantitative trait. We can see how homozygous
recessive or dominant, or heterozygous affects the manifestation of
different phenotypic traits.

Completing this, we decided to explore augmented data to see if
results run on augmented data on a total QTL analysis for the data
set. To do this, we first created an augmented data set derived from
our cross with a minprob of 0.1. This establishes a minimum
probability threshold for considering the effects of additional
markers or QTLs. This threshold, which influences the augmentation
step, allows us to filter out less statistically significant QTL effects,
refining the model and focusing on those with higher confidence.
The choice of the minprob threshold serves as a key determinant in
balancing sensitivity and specificity in the identification of
quantitative trait loci, tailoring the analysis to the desired level of
statistical rigor. We chose 0.1 because we wanted more statistically
significant results rather than a broader overview with less
statistically significant results. We then ran a geno.image on both
the augmented cross and the original cross and compared the plots.
Following this we took a scan of each cross, using the mqm scan for
the augmented set and scanone for the original set, and found the
peaks on each plot. We then found a molecular marker
corresponding to each peak and compared it to each other.
Following this, we used that marker we identified earlier as a
cofactors and took another mqm scan with the cofactor of
D18Mit64, the marker we identified. We then proceeded to plot all
three main scans together on the same plot and compared the peaks.

Morganton Scientific | Volume 1 | 2023 - 2024

Srinath, 2024

Main Scan Plot of Gallscore
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Figure 7. Main Scan for Gall Count
4. RESULTS

4.1. Expectation-Maximization Model

Using the Expectation-Maximization model, we generate 4 separate
main scans with threshold lines at 95 percent confidence, 90 percent
confidence, and 63 percent respectively.

4.1.1. Gall Count:

As shown below in , for a count of gallstones present, we

found two loci with a peak over 95 percent confidence.

There was 98 percent confidence in the correlation between c6.locé
and phenotypic manifestation and 96 percent confidence in the
correlation between c8.loc58 and phenotypic manifestation. We then
found the correlated molecular markers for those two spots which
were D6Mit46 and D8Mit88 respectively. Using those two markers,
we then plotted an effect plot as shown below in
see in both figures, a homozygous DD genotype at both of these
locations can correlate to gallstone susceptibility and a higher
amount of gallstones while heterozygous DC and homozygous CC
both present lower amounts of gallstones.

. As we can

4.1.2. Gall Score:

As shown below in , for a score on how severe the
gallstones were, we found one locus with a peak over or equal to 95

percent confidence.

There was 95 percent confidence of correlation between c2.loc52 and
phenotypic manifestation. We then found the correlated molecular
markers for this spot which was D2Mit94. Using this marker, we
then plotted an effect plot as shown below in
see, a homozygous CC genotype at this location can correlate to a
lower gallstone severity score while heterozygous DC and
homozygous D both present higher scores. It can be said then that
high gallstone severity is a dominant trait at this location in the
genome.

. As we can

4.1.3. Gall Weight:
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Effect plot for D6Mit46 Effect plot for D8Mit88
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Figure 10. Effect Plot showing Allele vs Phenotypic Presentation

As shown below in , for a score on how severe the
gallstones were, we found one locus with a peak over or equal to 95

percent confidence.

There was 95 percent confidence in the correlation between c2.loc52
and phenotypic manifestation. We then found the correlated
molecular markers for this spot which was D8Mit88. Using this
marker, we then plotted an effect plot as shown below in

As we can see, a homozygous DD genotype at this location can
correlate to a higher gallstone weight score while heterozygous DC
and homozygous C both present lower weights. It can be said then
that high gallstone weight is a recessive trait at this location in the
genome.

4.1.4. Cholesterol Monohydrate Crystals, aggregates:

As shown below in , for a score on the cholesterol

monohydrate crystals, we found one locus with a peak over or equal
to 95 percent confidence.

Main Scan Plot of Gall Count
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Figure 10. Main Scan for Gall Score
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Figure 12. Effect Plot showing Allele vs Phenotypic Presentation

There was 95 percent confidence of correlation between c6.loc56 and
phenotypic manifestation. We then found the correlated molecular
markers for this spot which was D6Mit62. Using this marker, we
then plotted an effect plot as shown below in . As we can
see, a homozygous DD genotype at this location can correlate to a
lower cholesterol monohydrate crystal score while heterozygous DC

and homozygous D both present higher scores.
4.2. Augmented QTL Analyses Comparison

After generating an augmented dataset, we then used geno.image to
plot both crosses respectively as shown below in

The genotypes CC, DC, and DD are displayed in the colors red, blue,
and green, respectively. The white spaces represent missing data. As
we can see, the augmented data is filled in much better, and there is
no missing data. While running the summary function on the data,
we see that nothing has changed in the augmented as compared to
this original other than there being much more individuals in the
data set (1343 as compared to 278). Additionally, the percent

Main Scan Plot of Gall Weight
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Figure 12. Main Scan for Gall Weight

61



An Analysis on Genomic Correlation for Gallstone Susceptibility

Effect plot for D8Mit88
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phenotyped remains approximately the same and the percent
genotyped jumps up to 100 percent.

Next, we complete an mqmscan on the augmented dataset and a
scanone on the original dataset and take a look at the maximum
point on both of these. The augmented dataset has a peak at c18.loc5
which is 5 centimorgans on chromosome 18. The original dataset has
a peak at c18.loc4 which is 8.46 centimorgans on chromosome 18.
We then extract a marker for both of these positions which both are
D18Mit64. We can then set that marker as a covariate and analyze
for a new peak, with this marker as an additional variable.

We then plotted all three of these plots on the same map with green
representing the original data, red representing the augmented data,
and blue representing augmented data with the peak as a covariate,

as shown in Figure 16 below.

As we can see, the augmented data narrows down the peaks into
only a few spots, showing how it counters overfitting due to the
small nature of the original data set. As the original data set was
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Figure 15. Main Scan for Gall Weight
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much smaller than the augmented one, we can hypothesize that
there are fewer peaks on the augmented model as it eliminates
peaks on the original which could be due to overfitting.

5. DiscussioN

In this study, we identified a great many locis of interest to
investigate as shown in the table above.

These results are statistically significant as each of them passes the
threshold value of 0.05 meaning that there is a 95 percent confidence
rate for a correlation between that loci and the associated
genotypes. In targeting this disease from a genomic standpoint, it
may be worthy to first target those markers that are dominant for
the associated phenotype. These would be D2Mit94 and D6Mit62.
Research may be further made into chromosomes 2, 6, 8, and 18 as

Genotype data
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Figure 16. Plot Grid of Original Genotype Data (left) and Augmented Genotype
Data (right)
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those are the most prominent chromosomes which correlate to
increased gallstone susceptibility.

6. CONCLUSION

Through our comprehensive QTL analysis exploring the genomic
correlation for gallstone susceptibility, we uncovered three
chromosomes of interest and 2 molecular markers of interest to
target first. We conducted a robust exploration using the R/qtl
package, leveraging the power of statistical methods like the
Expectation-Maximization model.

Molecular Dominant/

Marker Recessive

Threshold Phenotype

DeMit46 Recessive 0.05 High Gall
Count
High Gall

Count

High Gall
Score

High Gall
Weight

D6Mit62 Dominant 0.05 High
Cholesterol
Aggregate
Crystal
Formation

D8Mit88 Recessive 0.05

D2Mit94 Dominant 0.05

D8Mit88 Recessive 0.05

D18Mit64 Recessive 0.05 High
Susceptibility
(Augmented

Data)

Recessive 0.05 High
Susceptibility

D18Mit64

(Original Data)
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Our findings illuminated several key loci with high logarithm of the
odds (LOD) scores, providing significant insights into the genetic
underpinnings of gallstone susceptibility. Notably, we identified loci
associated with gallstone count, severity, weight, and cholesterol
monohydrate crystals. The allelic variations at these loci
demonstrated correlations with distinct phenotypic presentations,
unraveling the complexity of genetic influences on gallstone-related
traits. Furthermore, by employing an augmented dataset and
comparing results with the original dataset, we sought to enhance
the robustness of our analysis. The augmented data, with its
increased sample size, presented a more comprehensive view of the
genomic landscape associated with gallstone susceptibility. The
overlay of scans from the original and augmented datasets, along
with the inclusion of a covariate, provided a nuanced understanding
of the genetic factors at play.

Our study contributes to the fundamental understanding of
gallstone susceptibility and lays the foundation for personalized
preventive strategies and therapeutic interventions. The identified
QTLs harbor candidate genes that may play pivotal roles in
gallstone formation, paving the way for further targeted research.
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